martes, 18 de mayo de 2010




Ecuaciones de la circunferencia

Ecuación en coordenadas cartesianas.


En un sistema de coordenadas cartesianas x-y, la circunferencia con centro en el punto (h, k) y radio r consta de todos los puntos (x, y) que satisfacen la ecuación
.
Cuando el centro está en el origen (0, 0), la ecuación anterior se simplifica al
.
La circunferencia con centro en el origen y de radio la unidad, es llamada circunferencia goniométrica, circunferencia unidad o circunferencia unitaria.
De la ecuación general de una circunferencia,

se deduce:

resultando:



Si conocemos los puntos extremos de un diámetro: ,
la ecuación de la circunferencia es:

Ecuación vectorial de la circunferencia [editar]
La circunferencia con centro en el origen y radio R, tiene por ecuación vectorial: .Donde es el parámetro de la curva, además cabe destacar que . Se puede deducir fácilmente desde la ecuación cartesiana, ya que el componente X y el componente Y, al cuadrado y sumados deben dar por resultado el radio de la circunferencia al cuadrado. En el espacio esta misma ecuación da como resultado un cilindro, dejando el parámetro Z libre.

Cuando la circunferencia tiene centro en el origen y el radio es c, se describe en coordenadas polares como

Cuando el centro no está en el origen, sino en el punto y el radio es , la ecuación se transforma en:

Ecuación en coordenadas paramétricas [editar]
La circunferencia con centro en (a, b) y radio c se parametriza con funciones trigonométricas como:

y con funciones racionales como

Área del círculo delimitado por una circunferencia [editar]
El área del círculo delimitado por la circunferencia es:

Esta última fórmula se deduce sabiendo que el área de cualquier polígono regular es igual al producto del apotema por el perímetro del polígono dividido entre 2, es decir: .
Considerando la circunferencia como el caso límite de un polígono regular de infinitos lados, entonces, el apotema coincide con el radio, y el perímetro con la longitud de la circunferencia, por tanto:

No hay comentarios:

Publicar un comentario